Hệ thống quang học của LIGO khá phức tạp và tinh vi, bao gồm hệ thống quang học chính và các hệ thống cấp nguồn cho laser cũng như có các thiết bị phụ trợ khử nhiễu, triệt tiêu xung động địa chấn.
Toàn cảnh hai phòng thí nghiệm đặt LIGO tại Livingston, Lousiana và Hanford, Washington, Mỹ. Nhờ vào hai máy photocopy này, lần đầu tiên trong lịch sử, các nhà khoa học phát hiện ra sóng hấp dẫn tồn tại trong vũ trụ nhờ hai hố đen sáp nhập hồi tháng 9/2015; hứa hẹn đem lại đột phá mới trong nghiên cứu khoa học vũ trụ.
LIGO là viết tắt của Laser Interferometer Gravitational-Wave Observatory, có nghĩa là Trạm quan sát Sóng hấp dẫn bằng tia laser giao thoa.
Hệ thống quang học chính của LIGO cho mỗi giao thoa kế gồm các gương lớn đặt ở hai đầu, đĩa hiệu chỉnh cho các gương, bộ tách chùm laser chính, các gương tăng cường công suất chùm laser (PRM) và gương tăng cường tín hiệu (SRM). Khối lượng của các gương này khoảng 40kg. Các bộ phận thuộc hệ thống đều được làm từ silica nóng chảy có độ tinh khiết cao và được phủ một lớp pha tạp tantala. Độ tán xạ ánh sáng của các gương với ánh sáng tới là nhỏ hơn 10 phần triệu để đảm bảo độ nhạy.
Máy photocopy e studio 2508A: http://toshibathienbang.com/may-photocopy-moi/toshiba/ma-y-photocopy-e-sudio-2508a-3008a.html
Hệ thống này sẽ cung cấp ánh sáng cường độ và tần số ổn định cho các giao thoa kế của LIGO, đảm bảo đúng các thông số kỹ thuật cần thiết cho nguồn laser ở đầu vào. Phần chính của nó là một hệ thống laser 3 cấp.
Hệ thống quang học đầu vào điều khiển và đưa laser từ PSL vào hệ thống quang học chính. Thiết kế của nó còn yêu cầu phải có khả năng biến điệu tần số vô tuyến của ánh sáng, chọn chế độ phù hợp cho ánh sáng và lái chùm sáng vào giao thoa kế.
Ngoài ra LIGO còn các hệ thống phụ trợ như triệt tiêu xung động địa chấn, hút chân không để loại bỏ ảnh hưởng của bụi trên đường đi laser, đảm bảo máy photocopy toshiba sẽ chỉ thu được sóng hấp dẫn nếu có; cùng với các thiết bị để thu thập và xử lý, tính toán dữ liệu.
Nguồn VNExpress
Tham gia bình luận